A scalable tool for longitudinal Twitter analysis: understanding the impact of COVID-19 on public discourse

Walter Dempsey²⁵ Alfred Hero¹³⁴ Conrad Hougen³ Brandon Oselio² Wayne Wang⁴

¹Department of Biomedical Engineering

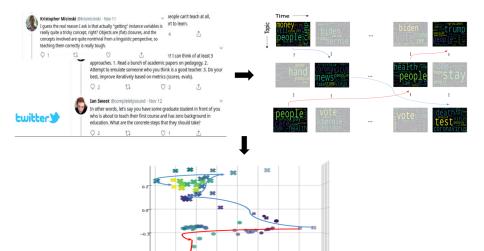
²Department of Biostatistics

³Department of EECS

⁴Department of Statistics

⁵Institute of Social Research

Overview of results



MIDAS Seminar

-0.8 -0.6 -0.6

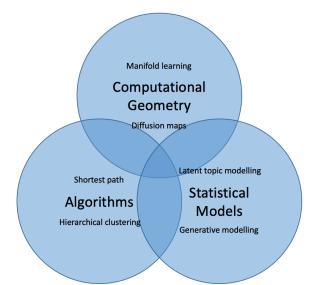
v -0.25 -0.3 Twitter-COVID

-0.30 -0.35 -0.40

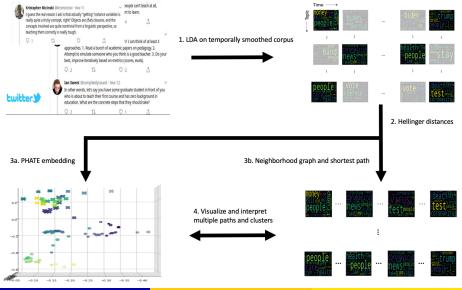
-0.20

-0.15

Data science tools



Roadmap



MIDAS Seminar

Twitter-COVID

Outline

Twitter Decahose Stream

- 2 Introduction to Probabilistic Topic Models
- 3 Connecting Topics Time by Time
- Geometric Embedding of Structured High-dimensional Objects
- Visualization and Interpretation of COVID-19 Discussions on Twitter

Twitter decahose stream ¹

Decahose stream

The Decahose delivers a ~ 10% **random sample** of the realtime Twitter Firehose (300 to 500 million tweets per day) through a streaming connection. This is accomplished via a realtime sampling algorithm which randomly selects the data, while still allowing for the expected low-latency delivery of data as it is sent through the firehose by Twitter. One of the features available with Decahose: enhanced reliability - **geographic diversity** (~ 0.1% - 0.5% of sampled tweets contain geo-location info) of backend systems^{*a*}.

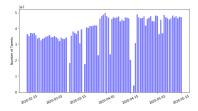
1Made available to us by MIDAS.

^a Decahose stream. https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/decahose. Accessed: 2020-04-20.

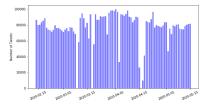
Subsampled tweets from Feb 15 to May 15

Three levels of subsampling:

- Geotagged US tweets: to study spatial variations of tweeting behavior.
 - English tweets: to avoid confusion to topic models and to allow easy interpretation.
 - Non-retweets: to study the influence of the original tweets.



(a) Raw decahose tweets volume from Feb 15 to May 15.



(b) Geotagged US, Non-retweet, English decahose tweets volume from Feb 15 to May 15.

Limitations of subsampled tweets

The data is noisy and subject to selection bias, and for it to be useful for general purposes one needs:

- People in the US who tweets about their opinions.
 - People in the US who tweets about their opinions + have Twitter location service on (so the data is geotagged).
- People who are truthful about their tweets.
 - People who are truthful about their tweets and use proper languages.

• . . .

But we are *NOT* doing predictions, *NOR* making strong inferential decisions based on the data.

Overall, these issues do not affect our study of "public discourse" on COVID-19, and we are interested in understanding this subpopulation.

Outline

- Twitter Decahose Stream
- 2 Introduction to Probabilistic Topic Models
 - 3) Connecting Topics Time by Time
- Geometric Embedding of Structured High-dimensional Objects
- Visualization and Interpretation of COVID-19 Discussions on Twitter

Brief introduction to topic modelling

Seeking Life's Bare (Genetic) Necessities

Haemonhilu

genome 1703 genes

> Genes In common 233 genes

> > Mycoplasma genome 469 genes

"are not all that far apart," especially in

comparison to the 75,000 genes in the hu-

man genome, notes Siv Andersson of Uppsala

University in Sweden, who arrived at the

800 number. But coming up with a consen-

sus answer may be more than just a genetic

numbers game, particularly as more and

more genomes are completely mapped and

sequenced. "It may be a way of organizing

any newly sequenced genome," explains

Arcady Mushegian, a computational mo-

lecular biologist at the National Center

for Biotechnology Information (NCBI)

in Bethesda, Maryland, Comparing an

Redundant and

genes removed

- 4 genes

Minima hone se -122 genes

Ancestral

COLD SPRING HARBOR, NEW YORK-How many genes does an organism need to arrived. Last week at the genome meeting here,⁵ two genome researchers with radically different approaches presented complementary views of the basic genes needed for lifter One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with but 252 genes, and that the earliest life forms

required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

* Genome Mapping and Sequencing, Cold Spring Harbor, New York, May 8 to 12.

SCIENCE • VOL. 272 • 24 MAY 1996

Documents exhibit multiple topics².

Genes needed

for biochemical

+22 genes

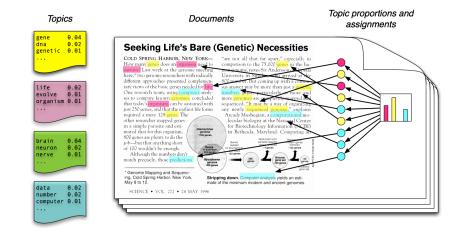
258

Stripping down, Computer analysis yields an esti-

mate of the minimum modern and ancient genomes.

²David M Blei. "Probabilistic topic models". In: Communications of the ACM 55.4 (2012), pp. 77-84.

Latent Dirichlet Allocation³



³David M Blei, Andrew Y Ng, and Michael I Jordan. "Latent dirichlet allocation". In: Journal of machine Learning research 3.Jan (2003), pp. 993–1022.

LDA and Twitter LDA⁴ as generative processes

LDA

For each topic t

• $\phi^t \sim \text{Dir}(\beta)$

For each doc \boldsymbol{d}

- $\theta^d \sim \text{Dir}(\alpha)$
- For each word *i* in doc *d*
 - $z_{d,i} \sim \operatorname{Multi}(\theta^d)$
 - $w_{d,i} \sim \operatorname{Multi}(\phi^{z_{d,i}})$

But, tweets (Micro-text) concentrate on *single topics*, and *aggregation/pooling* of tweets is needed.

Twitter LDA

For each topic t

• $\phi^t \sim \text{Dir}(\beta)$

For each user u

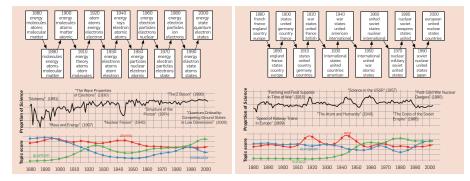
- $\theta^u \sim \text{Dir}(\alpha)$
- For each tweet s
 - $z_{u,s} \sim \operatorname{Multi}(\theta^u)$
 - For each word *i*

• $w_{u,s,i} \sim \operatorname{Multi}(\phi^{z_{u,s}})$

But, we are interested in *time evolution* of the topics as well.

⁴Wayne Xin Zhao et al. "Comparing twitter and traditional media using topic models". In: European conference on information retrieval. Springer. 2011, pp. 338–349.

Dynamic topic model



Two topics from a dynamic topic model, which was fit to the Science journal from 1880 to 2002. Top words at each decade were illustrated⁵⁶.

Idea: chaining together the topic and topic proportions distributions through random walk stochastic processes and *jointly fit the model*.

⁵David M Blei and John D Lafferty. "Dynamic topic models". In: *Proceedings of the 23rd international conference on Machine learning*. 2006, pp. 113–120. *David M Blei. "Probabilistic topic models". In: *Communications of the ACM* 55.4 (2012), pp. 77–84.

Why not dynamic LDA?

Why not dynamic LDA?

- Pros: dynamics explicitly built into the generative model.
- Cons:
 - Sensitive to model assumptions (e.g., stationarity)
 - Computationally unstable and expensive (relying on approximate inference algorithms)
 - Reliable existing software for dynamic short-document LDA

Goal: provide a simple suite of tools for general use, using robust and widely available software.

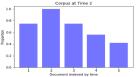
Idea: mimic the idea of dynamic topic models while taking simple, modular, and interpretable approaches.

Emulation of dynamic model: temporally smoothed corpus

Doc 1	Doc 2	Doc 3	Doc 4	Doc 5
Tweet 1				
Tweet 2	Tweet 3	Tweet 3	Tweet 3	
Tweet 3	Tweet 4	Tweet 4		
Tweet 4	Tweet 5			
Tweet 5				

Doc 1	Doc 2	Doc 3	Doc 4	Doc 5
Tweet 1				
Tweet 2	Tweet 2	Tweet 3	Tweet 3	Tweet 2
Tweet 3	Tweet 3	Tweet 4	Tweet 4	
Tweet 4	Tweet 4	Tweet 5		
Tweet 5	Tweet 5			

 $5 \times 0.75^{1} \approx 4 \rightarrow 5 \times 1 = 5 \rightarrow \dots \rightarrow 5 \times 0.75^{3} \approx 2$



Smoothed subsampling using examples of 5 documents each containing 5 tweets. Doc 1 aggregates tweets from day 1, Doc 2 aggregates tweets from day 2, etc.

T-LDA applied *independently in parallel* to each temporally smoothed corpus from Feb 15 to May 15 (\approx 90 time points) with 50 topics \Rightarrow *marginal models fitted time by time*.

0.2 0.0

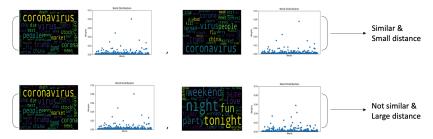
Outline

- 1) Twitter Decahose Stream
- 2 Introduction to Probabilistic Topic Models
- 3 Connecting Topics Time by Time
 - Geometric Embedding of Structured High-dimensional Objects
- 3 Visualization and Interpretation of COVID-19 Discussions on Twitter

Fusing marginal results

Goal: "stitch" together marginal LDA results, i.e., topics, by connecting all pairs of topics between any consecutive time points. Assign "weights" to each connection that measures similarity.

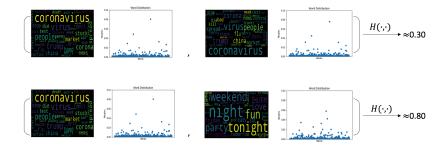
Idea: topics are represented by distributions over words \Rightarrow measure similarity between two discrete distributions.



Hellinger distances between two topics

Hellinger distance ⁷ between discrete probability distributions $P = (p_1, \ldots, p_N)$ and $Q = (q_1, \ldots, q_N)$:

$$H(P,Q) = \frac{1}{\sqrt{2}} \sqrt{\sum_{n=1}^{N} (\sqrt{p_n} - \sqrt{q_n})^2}, \quad 0 \le H(\cdot, \cdot) \le 1.$$

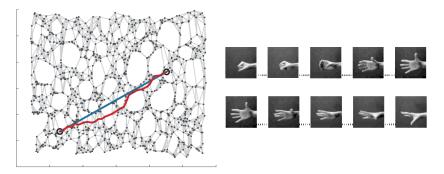


⁷A case of *f*-divergence that measures distance between probability distributions: https://en.wikipedia.org/wiki/F-divergence.

MIDAS Seminar

Connecting Topics Time by Time

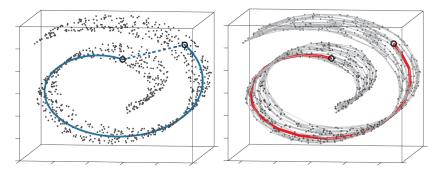
Shortest path on neighborhood graph



Shortest distance on neighborhood graph captures perceptually natural but highly nonlinear morphs of the corresponding high-dimensional observations by transforming them approximately along geodesic paths (solid curve on the left plot)⁸.

^{*}Joshua B Tenenbaum, Vin De Silva, and John C Langford. "A global geometric framework for nonlinear dimensionality reduction". In: science 290.5500 (2000), pp. 2319–2323.

Full vs. neighborhood weighted graph of observations



The "Swiss roll" data set, illustrating how nearest neighborhood graph (7 nearest neighbors in this case) exploits geodesic paths for nonlinear dimensionality reduction⁹.

⁹Joshua B Tenenbaum, Vin De Silva, and John C Langford. "A global geometric framework for nonlinear dimensionality reduction". In: science 290.5500 (2000), pp. 2319–2323.

Connecting Topics Time by Time

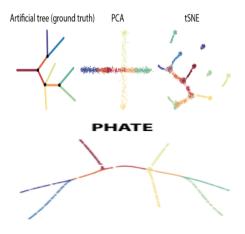
Topic transformation on full vs. 10-nearest neighbor graph

Outline

- 1) Twitter Decahose Stream
- 2 Introduction to Probabilistic Topic Models
- 3 Connecting Topics Time by Time
- Geometric Embedding of Structured High-dimensional Objects
- 5 Visualization and Interpretation of COVID-19 Discussions on Twitter

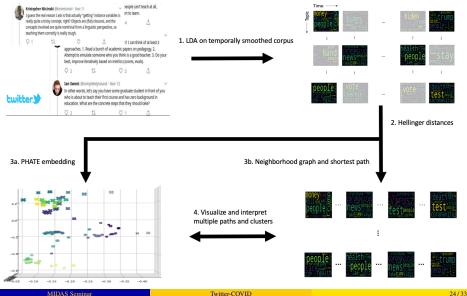
PHATE¹⁰

- To visualize and interpret high dimensional word distributions, need *lower-dimensional embedding* that capture the intrinsic high-dimensional *trajectory structure* of the data.
- Traditional methods like PCA assumes linearity.
- Nonlinear methods like t-SNE DO NOT naturally exhibits trajectory or progression.
- PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding) is designed explicitly to preserve progression structure in data.



¹ºKevin R Moon et al. "Visualizing structure and transitions in high-dimensional biological data". In: Nature Biotechnology 37.12 (2019), pp. 1482–1492.

Summary of the procedure

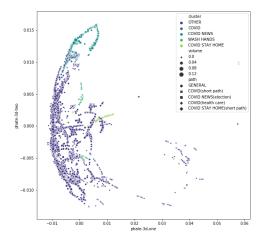


Outline

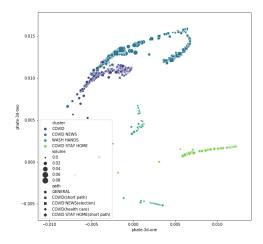
- 1) Twitter Decahose Stream
- 2 Introduction to Probabilistic Topic Models
- 3 Connecting Topics Time by Time
- Geometric Embedding of Structured High-dimensional Objects

5 Visualization and Interpretation of COVID-19 Discussions on Twitter

PHATE embedding of 4500 word distributions

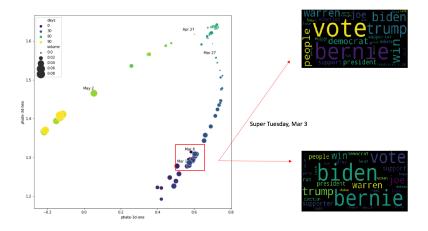


PHATE embedding of selected COVID topics



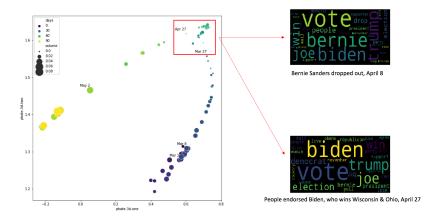
Case study I: presidential election topic

Idea: use real events we know about to understand the trajectories.



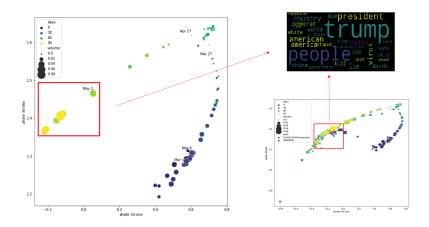
Super Tuesday week clustered with high volume.

Case study I cont'd: April subcluster



Tweets volume dies out in late March but re-surged and clustered in April because Bernie Sanders dropped out and more election-related activities.

Case study I cont'd: May subcluster



Election tweets in May converged to general COVID-related news tweets.

Case study II: general COVID topic

Divergence of two similar COVID-related conversations that ended up as a COVID-testing conversation and a COVID-politics conversation, respectively.

Case study II cont'd: dynamics

Conclusion

This talk:

- Generative statistical model & Computational geometry & Algorithms collectively provide efficient ways for understanding high-dimensional noisy Twitter data ⇒ visualization and interpretation of public discourse around COVID-19.
- Longitudinal analysis of Twitter data done without complicated models ⇒ understanding the impact of COVID-19 on various societal aspects.

Future work:

- Wrapping various tools into a single re-usable implementation for the public.
- Apply such tools globally or to tweets from other regions other than the US.
- Spatial analysis of Twitter data.